formulamobile.ru

Природа и происхождение вирусов. Вирусы и природа их происхождения

Общая вирусология.

Экзаменационные вопросы

13. Экология вирусов. Природа и происхождение. Принципы классификации.

14. Вирус как особая форма жизни. Принципы строения вириона. Значение вирусов в патологии человека. Работы Д. Ивановского.

15. Молекулярные основы репродукции вирусов. Репродукция ДНКсодержащих вирусов.

16. Молекулярные основы репродукции вирусов. Варианты репродукции РНК-содержащих вирусов.

17. Формы взаимодействия вируса с клеткой. Персистенция вирусов. Экологическое значение и клинические проявления.

18. Персистенция вирусов: понятие и молекулярные механизмы.

19. Понятие об онкогенах, их природа и механизмы действия на клетку. Онкогенные вирусы и механизмы вирусного канцерогенеза.

20. Бактериофаги. Фазы взаимодействия с бактериальной клеткой. Умеренные и вирулентные фаги. Практическое использование фагов.

И другие…

Термины из генетики

РЕПЛИКАЦИЯ (повторение ) - удвоение молекул ДНК (у некоторых вирусов РНК) при участии специальных ферментов.

ТРАНСКРИПЦИЯ (переписывание ) - биосинтез молекул РНК на соответствующих участках ДНК.

ТРАНСЛЯЦИЯ (передача) - биосинтез белков в живой клетке на рибосомах.

Синтез белка

Трансляция

(на фото 1, 2 – субъединицы

Транскрипция рибосомы; 3 – цепочка полипептида)

это особая форма существования живой материи.

1892 год - Ивановский Д.И. изучая заболевания листьев табака, открыл вирус табачной мозаики. Сформулировал отличия вирусов от бактерий:

фильтруемость через бактериальные фильтры,

неспособность расти на искусственных средах.

Принципиальные отличия вирусов от прокариотов и эукариотов

1) неклеточное строение

2) мельчайшие размеры

3) один тип нуклеиновой кислоты

4) отсутствие рибосом (белоксинтезирующего аппарата)

5) отсутствие даже зачатков собственного энергетического метаболизма

7) дизъюнктивный (разобщенный) способ размножения

Природа и происхождение вирусов

Антигенная изменчивость вируса гриппа и аспекты ее изучения.
Решение получения эффективных аттенуированных вариантов вируса грипп тормозится из-за уникальной пластичности и изменчивости его антигенных свойств. Почти ежегодные эпидемии гриппа через разные интервалы принимают глобальный характер. В последние годы инфектом, вызывающим пандемии, является вирус гриппа А. Анализ антигенных сдвигов внутри каждого из трех его типов показывают, что изменение антигенного состава штаммов вирусов типа АО к типу А происходило постепенно, а переход от типа А1 к А2 бал резким.
После того как в 1957 г было зафиксировано, что в природе появился новый серологический тип А2, он некоторое время казался стабильным, хотя небольшие изменения были. Но уже в 1964 г они стали значительными, а после эпидемии в Гонконге вирусы отличались на столько резко, что возникло предположение о возникновении нового антигенного типа А. В процессе эволюции вируса изменялись не только антигенные свойства поверхностных белков, но и другие признаки. У штамма вируса гриппа, выделенного во время эпидемии 1971-1972 г., в отличие от циркулировавших ранее штаммов значительно повысилась репродуцирующая и нейраминидазная активность, резко возросла термостабильность вирусов и появилась способность регулярно вызывать вирусемию у мышей (Закстельская и др., 1969; Соколов, Подчерняева, 1975).
Если раньше вирусы типа В отличались относительной стабильностью, то с 1967 г. наблюдается его непрерывное изменение (Seihachiro, Mitsuo, 1974). В апреле – мае 1974 г. были выделены новые штаммы вируса гриппа, из них В/Гонконг 15/72 рассматриваются как новый вариант, а другие – как промежуточные между старыми и новыми штаммами, что позволяет пересмотреть данные об антигенной стабильности вируса гриппа В и предположить появление нового серотипа.
Таким образом, вырисовывается картина значительных антигенных изменений внутри типов А и В. Это, естественно, привлекает пристальное внимание ученых, занимающихся проблемой гриппа. Поскольку даже наличие напряженного иммунитета населения не может стать причиной столь крупных антигенных изменений вируса гриппа, была выдвинута гипотеза о периодичности возникающих рекомбинаций между вирусами гриппа человека и животных, а также между вирусами человека и птиц. При разработке этой гипотезы выяснилось, что гриппом в естественных условиях болеют свиньи, лошади, индейки, цыплята, утки, крачки, и список этот продолжает пополняться. В сыворотке крови у них имеются антитела к вирусам гриппа человека. Это неудивительно, так как фрагментарность генома вируса гриппа обуславливается возможность не только внутривидовой, но межвидовой рекомбинации.
Препаративное разделение нейраминидазы и гемагглютинина открывает перспективы углубленного анализа взаимосвязи между отдельными признаками. Некоторые исследователи (Webster a. o., 1973; Горев и др., 1974) отмечают, что вирус - рекомбинант одновременно с гемагглютинином приобретает вирулентности. Имеется набор рекомбинантов, с заданными гемагглютинином и нейраминидазой.
В настоящее время многие вирусологические лаборатории мира изучают эпизоотии гриппа и анализируют антигенные связи с гриппом человека. Работы в этом направлении координируются и стимулируются ВОЗ. Сложность указанной проблемы диктует необходимость неоднозначного подхода к ее решению. Параллельные поиски других подходов к этому вопросу не следует рассматривать как альтернативные.
В 40-50 годах было экспериментально доказано возникновение антигенных вариантов при пассировании вируса в организме иммунизированных животных (Archetti, Horsfoll, 1960). Эти изменения были довольно стойкими, вирусы сохраняли свою новую антигенную специфичность в серийных пассажах in ovo и в отсутствии иммуносыворотки. Более того, длительные пассажи вируса гриппа через организмы неиммунезированных здоровых животных меняют его биологические свойства. Например, K. Paucker (1960) в процессе пассажей штамма PR8 длительно получал вирус, антигенно отличный от исходного и не похожий на другие типы вируса гриппа. Автор полагает, что между 103 и 107 пассажами образовался мутант, заменивший впоследствии исходный вирус. Аналогичные данные приводят K. Zgozelska и др. (1973).
Здесь мы видим проявление основного закона развития любой популяции, в том числе и вирусной, − генофонд популяции со временем меняется: с одной стороны, он обедняется в результате вымирания организмов, заключающих отдельные гены, а с другой − обогащается благодаря мутациям, дающим начало новым генам.
Работы S. Fazekas de Sent Groth, C. Hannoun (1973) по селекции спонтанных антигенных мутантов вируса гриппа А под "иммунопрессом" (т. е. в присутствии иммуносыворотки) позволили воспроизвести иерархический порядок вирусов внутри каждого типа. Причем во всех своих выводах он основывался на показателях перекрестной РЗГА. В опытах по отбору поздних мутантов, полученных с помощью антител, ему удалось воспроизвести естественный процесс селекции эпидемических штаммов. Он же предложил простую модель взаимодействия антитела с антигеном. Автор представил антигенную зону белковой оболочки вируса в виде небольшого числа аминокислотных белковых цепей, выступающих за поверхность вируса. Схематично это имеет вид вилки с зубьями разной длины и ширины, а соответствующие антитела представляют собой полости, комплиментарные по отношению к некоторым или ко всем зубьям. Таким образом, контакт антисыворотки с родственным антигеном приводит к элиминации гомологичных антигенов, и в популяции остаются антигены, имеющие некомплементарные участки, т. е. мутанты.
Эта схема представляет логическое развитие основных положений иммунологии, сложившихся в 40-х годах, о взаимодействии антигена и антитела и теории биосинтеза антител. Согласно этим работам, активная группа антител обладает конфигурацией, дополнительной к конфигурации детерминирующей группы антигена. Предполагалось, что эти группы относятся друг к другу как предмет к своему зеркальному отражению. K. Landsteiner (1946) были поставлены опыты с искусственным антигеном, полученным комплексированием молекул белка с различными низкомолекулярными соединениями, которые показали, что специфичность этого антигена может определяться лишь небольшой группой, присоединенной к белку. Антитела "не узнают" антиген, если он отличается только положением метильной группы в ароматическом ядре от того, которым было стимулировано образование этих антител, или пространственным положением гидроксила (Бойд 1969).
Таким образом, возвращаясь к вопросу антигенной изменчивости вируса, можно констатировать селекционную роль антител в этом процессе. Как возникают мутантные частицы в вирусной популяции – это один из вопросов, на который необходимо ответить для понимания эволюции вирусов гриппа.
Любая вирусная популяция содержит спонтанные мутанты, возникшие в результате действия внешних или внутренних факторов. В зависимости от приобретенных свойств мутант может иметь преимущество в размножении и преобладать в популяции. В некоторых случаях можно уловить тот фактор, который сыграл решающую роль в возникновении мутанта. Наибольший интерес для исследователей, занимающихся проблемой гриппа, представляет пандемия 1918 г., поскольку вирус ее был чрезвычайно патогенным для человека. Ретроспективный анализ этого вируса наводит некоторых исследователей на предположение, что пандемия была вызвана вирусом гриппа свиней, выделенным в 1930 г. так как штаммы имеют антигены, родственные антигенам вирусов свиней. Согласно другой точки зрения, повышение активности вируса вызвано появлением мутантных частиц под действием иприта, который применялся во время Первой Мировой войны, т. е. перед пандемической волной гриппа (Блашкович 1966). Действительно, иприт – чрезвычайно сильный биологически активный химический агент. Его мутагенная активность впервые была показана C. Auerbach и T. M. Robson (1946). Тогда же было выяснено, что иприт оказывает прямое мутагенное действие на хромосомы. Позднее было установлено, что иприт способен вызывать мутации у вирусов и бактерий. Следовательно, возможная его роль как мутагенного агента не исключена, если принять во внимание, что химические и физические факторы могут вызывать генетические изменения биологических объектов всех ступеней развития и вирусы, по-видимому, не составляют исключения.
К числу факторов, которые в естественных условиях могут являться мутагенами, относятся фармакологические препараты. Имеются работы, в которых анализируется связь тератогенной активности и химической структуры молекул лекарственных веществ; у микроорганизмов наблюдается аналогичное явление повсеместного возникновения лекарственно устойчивых мутантных форм. В разгар заболевания гриппом, когда происходит репродукция вируса в организме, больные принимают лекарства, представляющие собой синтетические химические соединения.
Известно, что противовирусные агенты достаточно эффективны только в том случае, если они способны избирательно подавлять синтез нуклеиновых кислот, т. е. соприкасаются непосредственно с генетическим аппаратом. По-видимому, в силу особенностей генома вируса гриппа грань между чисто противовирусным и мутагенным воздействием химических соединений легко переходима.
Наши эксперименты по изучению влияния химических соединений на антигенную специфичность вирусов гриппа, относящихся к серотипу АО, показали, что некоторые соединения из класса супермутагенов, могут вызвать изменения, не выходящие за пределы гомологичного серотипа. В частности, два первых представителя нитрозоалкилмочевин индуцировали мутации по этому признаку (Чуланова, 1968; Ахматуллина и др. 1974). Мы пользовались предложенной нами модификацией РЗГА, которая позволяла устанавливать коэффициент Ап и, основываясь на нем, определять степень различия в антигенной специфичности дикого и мутантных вирусов.
Эксперименты с большим набором химических соединений выявили среди них другой агент – 1,4-бис-диазоацетилбутан, активный в мутации по признаку антигенной специфичности. Мы использовали также метод иммунпресса, после воздействия мутагеном вирус пассировали в присутствии гомологичной сыворотки. Неизмененные вирусные частицы нейтрализовывали комплиментарными антителами, а для индуцированных мутантов создавали селективные условия. Полученные антигенные мутанты были изучены в перекрестной РЗГА с сывороткой к дикому и мутантному вирусу и в реакции преципитации и свидетельствовали о значительных антигенных сдвигах.
Таким образом, дальнейшее экспериментальное изучение индуцированных мутантов с применением большого набора химических соединений позволит внести сведения в изучаемую проблему.

Грипп. Лечение и профилактика.
Грипп – острое инфекционное заболевание верхних дыхательных путей. Сам по себе опасный, грипп усугубляет течений других хронических заболеваний и вызывает серьезные осложнения со стороны сердечно-сосудестой и центральной нервной систем, органов пищеварения, почек, и др. Наиболее опасен грипп для детей и людей преклонного возраста. Быстрота распространения гриппа, тяжесть заболевания, частота осложнений, иногда смертельный исход,- все это делает профилактику его особенно важной. Люди, занимающиеся спортом, гимнастикой, значительно реже подвергаются воздействиям вируса гриппа. Известно несколько разновидностей вируса гриппа – А, В, С, и др.; под воздействием факторов внешней среды их число может увеличится. В связи с тем, что иммунитет при гриппе кратковременный и специфичный, возможно неоднократное заболевание в один сезон. По статистическим данным, ежегодно болеют гриппом в среднем 20-35% населения.
Источником инфекции является больной человек; больные легкой формой как распространители вируса, наиболее опасны, так как своевременно не изолируются – ходят на работу, пользуются городским транспортом, посещают зрелищные места.
Инфекция передается от больного к здоровому воздушно-капельным путем при разговоре, чихании, кашле или через предметы домашнего обихода.
Скрытый период при гриппе длится от 1 – 12 часов до 3 суток. Заболевание начинается остро: резкое повышение температуры до 38-400, озноб, головная боль, боли в костях и мышцах, общая разбитость; возникают боли и першение в горле, расстройство вкуса и обоняния; через 12-24 часа появляются выделения из носа.
Температура держится 1-3 суток, иногда до 6-7 суток. Как правило к концу первой недели температура нормализуется. При правильном лечении и уходе выздоровление наступает через 7-9 дней.
При подозрении на грипп заболевшего следует изолировать и уложить в постель. Это надо сделать до прихода врача. Учитывая, возбудители гриппа очень неустойчивы во внешней среде и легко разрушаются под воздействием кислорода и дезинфицирующих средств, комнату необходимо регулярно проветривать. Не реже одного раза в день проводить влажную уборку помещения с использованием хлорной извести, формалина, соды, хлорамина, хозяйственного мыла.
Больной должен иметь индивидуальную посуду. Столовую и чайную посуду больного надо мыть кипятком с питьевой содой или обрабатывать 5%-ым раствором хлорамина. Обязательна систематическая дезинфекция нательного и постельного белья больного путем кипячения в мыльном растворе.
Все лекарственный препараты, назначенные врачом, следует хранить в специально отведенном месте. Помимо лекарственных препаратов, во всех периодах заболевания целесообразно обильное питье: чай с медом или лимоном, клюквенный морс, теплое молоко, фруктовые и овощные соки. Пища должна быть калорийной. Необходимо строго соблюдать указания врача. Самолечение недопустимо. Лекарства без назначения врача принимать нельзя. Особенно следует предостеречь в отношении антибиотиков и сульфаномидов – на вирус гриппа они не действуют, а при самовольном приеме, и неточных дозировках могут давать аллергические реакции. А вот чем можно воспользоваться безболезненно, так это ножные ванны, горчичники, лук, чеснок. Выделяясь через легкие, эфирные масла, содержащиеся в луке и чесноке, увеличивают отделение слизи и тем самым способствуют более легкому отхаркиванию при заболевании органов дыхания.
Здравоохранение располагает и рядом специфических антигрипозных средств, к числу которых относится в первую очередь живая вакцина и специальная сыворотка, Содержащие защитные белки. Внедрены в практику препараты – интерферон, оксолиновая мазь.
Закаливание, рациональное питание, свежий воздух, своевременное лечение хронических заболеваний помогут вам в профилактике простудных заболеваний, в частности, гриппа.

Министерство общего и профессионального образования

Свердловской области

ГОУ СПО «Красноуфимский педагогический колледж»

Вирусы и природа их происхождения

Исполнитель:

Дмитриева И.Ю.,

студентка 23 группы

Руководитель:

Каптиева О.В.,

преподаватель

естественнонаучных

дисциплин

г. Красноуфимск

Паспорт

Название проекта: «Вирусы и природа их происхождения».

Руководитель проекта: Каптиева О.В.

Учебный предмет, в рамках которого проводится работа по проекту

Естествознание.

Учебная дисциплина близкая по теме предмета биология.

Тип проекта: творческий.

Возраст обучающихся, для которых предоставлен проект 16-18 лет.

Необходимое оборудование: учебная литература, фотографии,

компьютер, принтер, сканер.

Введение

Природа происхождения вирусов

Что представляют собой неклеточные формы жизни?

Как вирус проникает в клетку?

Способ размножения вирусов

Что такое СПИД?

Вред и польза вирусов

Америка впервые одобрила вирусы в качестве пищевой добавки

Заключение

Список литературы

Введение

Разнообразие жизни на земле с трудом поддается описанию. Полагают, что сейчас на нашей планете обитает свыше миллиона видов животных, 0,5 млн. видов растений, до 10 млн. микроорганизмов, причем эти цифры занижены. Нет, и не будет никогда человека, который знал бы все эти виды. Тем более возникает острая нужда в системе живой природы, руководствуясь которой мы могли бы найти в ней место для организма, который нас заинтересовал,- будь то бактерия, вызывающая новую болезнь, новый жук или клещ, птица или рыба. Эту необходимость люди осознали еще в запрошлом веке.

Именно тогда великий шведский натуралист Карл Линней создал научную систему живой природы, которой мы пользуемся и в настоящее время. Отчет возраста научной систематики ведется с 1758г., когда вышло в свет 10-е издание линнеевской «Системы природы». Основные принципы Линнея и названия видов, данные им, сохраняются до сих пор, хотя видов сейчас известно в тысячи раз больше.

В нашем мире существует большая группа живых существ, не имеющих клеточного строения. Эти существа носят названия вирусов (лат. ”вирус”- яд) и не представляют неклеточные формы жизни. Вирусы нельзя отнести ни к животным, ни к растениям. Они исключительно малы, поэтому могут быть изучены только с помощью электронного микроскопа.

Вирусы способны жить и развиваться в клетках других организмов. Поселяясь внутри клеток животных и растений, вирусы вызывают много опасных заболеваний, таких как мозаичная болезнь табака, гороха и других культур (у растений). В изучении прокариот и вирусов линнеевская система в полной мере не применяется. В его времена о мире микроорганизмов почти ничего не знали.

Поэтому формы вирусов и бактерий в системе часто обозначают не звучными латинскими буквами, а сочетаниями букв и цифр. Вирусы имеют генетические связи с представителями флоры и фауны Земли. Согласно последним исследованиям, геном человека более чем на 30 % состоит из информации, кодируемой вирусоподобными элементами и транспозонами. С помощью вирусов может происходить так называемый горизонтальный перенос генов (ксенология), то есть передача генов между двумя неродственными (или даже относящимися к разным видам) особями.

Мы выбрали эту тему, так как считаем, что она очень актуальна в наше время. Многие ученые борются с опасными, смертельными вирусами с того времени, как только они были обнаружены.

С моей точки зрения, борьба с вирусами будет всегда, пока ученые не найдут средство, которое уничтожит эти опасные для жизни человека организмы имеющие неклеточную форму строения.

Бороться с этими организмами очень тяжело, так как, они имеют свойство изменять состав своего строения при попадании в благоприятные условия.

При написании проекта мы поставили перед собой следующую цель: изучить суть происхождения вирусов, их строение и роль в природе.

1)подобрать необходимые информационные источники;

2)проработать данную информацию и соотнести ее с изучаемой проблемой;

3)рассмотреть открытия ученых с целью исследования строения вирусов;

4)найти положительные и отрицательные качества вирусов;

5)подготовиться к защите проекта.

Природа и происхождение вирусов

Современные представления о вирусах складывались постепенно. В 1892г. Д.И. Ивановский обратил внимание на широко распространенную болезнь табака, при которой листья покрываются россыпью пятен (мозаичная болезнь). После открытия вирусов Ивановским их считали просто очень мелкими микроорганизмами, не способными расти на искусственных питательных средах. Вскоре после открытия вируса табачной мозаики была доказана вирусная природа ящура, а еще через несколько лет были открыты бактериофаги. Таким образом, были открыты три основные группы вирусов, поражающее растения, животных и бактерий. Однако в течение длительного времени эти самостоятельные разделы вирусологии развивались изолированно, а наиболее сложные вирусы -- бактериофаги -- долгое время считались не живой материей, а чем-то вроде ферментов. Тем не менее, уже к концу 20-х -- началу 30-х годов стало ясно, что вирусы являются живой материей, и примерно тогда же за ними закрепились наименования фильтрующихся вирусов, или ультравирусов.

В конце 30-х -- начале 40-х годов изучение вирусов продвинулось настолько, что сомнения в живой их природе отпали, и было сформулировано положение о вирусах как организмах. Основанием для признания вирусов организмами явились полученные при их изучении факты, свидетельствовавшие, что вирусы, как и другие организмы (животные, растения, простейшие, грибы, бактерии), способны размножаться, обладают наследственностью и изменчивостью, приспособляемостью к меняющимся условиям среды их обитания и, наконец, подверженностью биологической эволюции, обеспечиваемой естественным или искусственным отбором. Это является, прежде всего, взаимодействием двух геномов -- вирусного и клеточного.

Согласно третьей, вирусы являются дериватами клеточных генетических структур, ставших относительно автономными, но сохранившим зависимость от клеток. Третья гипотеза 20--30 лет казалась маловероятной и даже получила ироническое название гипотезы взбесившихся генов. Однако накопленные факты дают все новые и новые аргументы в пользу этой гипотезы. Наряду с этим накопилось значительное число фактов, свидетельствующих о существовании в природе в широких масштабах обмена готовыми блоками генетической информации, в том числе у представителей разных, эволюционно далеких вирусов. В результате такого обмена могут быстро и скачкообразно изменяться наследственные свойства путем встраивания чужеродных генов (заимствование генной функции). Новые генетические качества могут возникнуть также благодаря неожиданному сочетанию собственных и интегрированных генов (возникновение новой функции). Наконец, простое увеличение генома за счет неработающих генов открывает возможность эволюции последних (образование новых генов).

Что представляют собой неклеточные формы жизни?

Кусает больно и обидно,

Хоть самого подчас не видно…

Дж. Свифт

«Что же, пусть наша прекрасная незнакомка так и останется незнакомкой, лишь бы она полюбила нас», ? сказал, по преданию, выдающийся микробиолог Л.Пастер, так и не сумев выделить возбудителя бешенства? страшной болезни, от которой в XIX веке не было никакого спасения. Получить вакцину и тем самым познать природу инфекционного агента и спасти многие тысячи человеческих жизней ему удалось. Сделать это в те времена не смог бы никто, поскольку возбудителем бешенства оказался не микроб, как того ожидал Л.Пастер, а вирус.

Наряду с одноклеточными и многоклеточными организмами в природе существуют и другие формы жизни. Это вирусы, не имеющие клеточного строения. Они представляют переходную форму между живой и неживой материей. Вирусы устроены очень просто. Каждая вирусная частица состоит из РНК или ДНК, заключенной в белковую оболочку, которую называют капсидом, полностью сформированная инфекционная частица называется вирионом . У некоторых вирусов (герпеса или гриппа) есть еще и дополнительная оболочка, которая возникает из плазматической мембраны клетки-хозяина. Вирусы способны жить и размножаться только в клетках других организмов. Во внешней среде они не проявляют никаких признаков жизни, многие имеют форму кристаллов. Величина вирусов колеблется от 20 до 300 нм.

Вирус обладает достаточно сложной внутренней структурой. Его сердцевина (ядро) содержит одну (иногда больше) молекулу нуклеиновой кислоты (ДНК или РНК). Нуклеиновые кислоты самых мелких вирусов содержат 3-4 гена, а самые крупные вирусы имеют до 100 генов. Снаружи вирус покрыт белковым «чехлом», защищающим нуклеиновую кислоту от вредных воздействий окружающей среды. Форма вирусов очень разнообразна. По размерам вирусы подразделяют на крупные (300-400 нм в диаметре), средние (80-125 нм) и мелкие (20-30 нм). Крупные вирусы можно увидеть в обычный микроскоп, более мелкие изучают под электронным микроскопом.

Как вирус проникает в клетку?

Вирусы растений, клетки которых кроме мембраны защищены прочной оболочкой из клетчатки, могут проникнуть в них лишь в местах механических повреждений. Разносчиками этих вирусов могут быть членистоногие - насекомые вроде тлей и клещи с сосущим аппаратом. Они переносят вирионы на своих хоботках. И у человека переносчиками вирусных болезней могут быть москиты (желтая лихорадка), комары (японский энцефалит) или клещи (таежный энцефалит). Раньше все вирусы, распространяющихся при помощи кровососов, объединяли в группу арбовирусов .

Безоболочечные клетки животных, защищенные одной мембраной, более уязвимы для вирусов в первую очередь из-за своей способности к фаго - и пиноцетозу . Захватывая питательные вещества, они часто «проглатывают» и вирионы. Если клетки соединены друг с другом, как клетки нервной системы, вирус может путешествовать по этим контактам, заражая одну клетку за другой. Обычно это медленный процесс (так происходит заражение, например, при укусе бешеного животного).

Наконец, у многих вирусов развиваются специальные приспособления для проникновения в клетку. Клетки, выстилающие дыхательные пути, покрыты защитным слоем слизи. Но вирус гриппа разжижает слизь и проникает к мембране (потому-то первый симптом гриппа - часто насморк).

Вирус СПИДа заражает белые кровяные тельца нашей крови - лейкоциты , используя белки, которые торчат из поверхности его оболочки, «украденной» у хозяйской клетки.

На этом рисунке вы может увидеть, как вирусы проникают в клетку. Слева и в центре бактериофаг кишечной палочки: при сокращении хвоста нить ДНК из головки впрыскивается в цитоплазму бактериальной клетки. Справа - заражение клетки человека вирусом СПИДа. Гликопротеид оболочки gP 120 прилипает с специфическому белку CD 4; gP 41 протыкает мембрану хозяйской клетки, в результате белковая капсула РНК проходит в цитоплазму, а пустая оболочка вириона отбрасывается.

Классификация организмов на основе клеточной теории. Общая характеристика вирусов и их биолого-экологической роли на Земле.

При изучении органического мира Земли было установлено, что организмы по их строению можно разделить на две большие группы: клеточные и неклеточные формы. Большинство организмов имеют клеточное строение, и только организмы, образующие царство Вирусы , имеют неклеточное строение.

Вирусы были открыты Д.И. Ивановским в 1892г., а в 1917г. Феликс Дэрель открыл бактериофаг - вирус, поражающий бактерии. Вирусы образуют царство Предклеточные или Вирусы . Это организмы, имеющие очень малые размеры (от 20 до 200 нм (нанометров)). Вирусы не способны к росту и их жизнедеятельность может осуществляться только внутри клетки организма хозяина.

Биолого-экологическая роль вирусов состоит в том, что они являются фактором эволюции, вызывая гибель ослабленных особей и способствуя выживанию более приспособленных к данной среде обитания организмов.

Способ размножения вирусов

Вирус (от лат. virus- яд) - микроскопическая частица, способная инфицировать клетки живых организмов.

Вирусология (от virus и logos - слово, учение), наука о вирусах. Общая вирусология изучает природу вирусов, их строение, размножение, биохимию, генетику.

Способ размножения вирусов также отличается от деления, почкования, спорообразования или полового процесса, которые имеют место у одноклеточных организмов, у клеток многоклеточных организмов и у последних в целом. Репродукция, или репликация, как обычно обозначают размножение вирусов. Формирование вирионов происходит либо путем само сборки (упаковка вирусной нуклеиновой кислоты в белковые капсиды и образование нуклеокапсида), либо с участием клетки, либо обоими способами (оболочечные вирусы). Конечно, противопоставление митотического деления клетки и репликации не абсолютно, так как способы репликации генетического материала у ДНК-содержащих вирусов принципиально не отличаются, а если учесть, что и синтез генетического материала у РНК-содержащих вирусов также осуществляются по матричному типу, то относительным является противопоставление митоза и репликации всех вирусов. И, тем не менее, различия в способах размножения клеток и вирусов настолько существенны, что имеет делить весь живой мир на вирусы и невирусы.

Что такое СПИД?

В мире существует множество вирусов, которые вызывают опасные для человека заболевания, такие как бешенство, энцефалит, полиэмиет, иммунодефицит, грипп, оспа…

Медицинская, ветеринарная и сельскохозяйственная вирусология исследуют патогенные вирусы, их инфекционные свойства, разрабатывает меры предупреждения, диагностики и лечения вызываемых ими заболеваний.

В наше время серьезной проблемой является СПИД (синдром приобретенного иммунодефицита). Это эпидемическое заболевание человека, поражающее преимущественно иммунную систему, которая защищает организм от различных болезнетворных агентов. Заражение системы клеточного иммунитета человека проявляется развитием прогрессирующих инфекционных заболеваний и злокачественных новообразований, причем организм становится беззащитным к микробам, которые в обычных условиях не вызывают болезни.

Впервые СПИД был официально зарегистрирован на территории США в 1981г., а в 1983г. Удалось доказать, что он вызывается неизвестным ранее человеческим вирусом, из семейства ретровирусов. В состав этого

вируса входит только ему присущий фермент - ревертаза . Открытие его было настоящей революцией в биологии, так как показало возможность передачи генетической информации не только по классической схеме ДНК> РНК> белок, но и путем обратной транскрипции от РНК>ДНК.

Возбудитель болезни - вирус иммунодефицита человека (ВИЧ). Геном ВИЧ представлен двумя идентичными молекулами РНК, состоящими примерно из 10 тыс. пар оснований. При этом ВИЧ, выделенный от различных больных СПИДом, отличаются друг от друга по количеству оснований (от 80 до 1000). ВИЧ обладает уникальной изменчивостью, которая в 5 раз превышает изменчивость вируса гриппа и в 100 раз больше, чем у вируса гепатита В. Беспрерывная генетическая и антигенная изменчивость вируса в человеческой популяции приводит к появлению новых вирионов ВИЧ, что резко усложняет проблему получения вакцины и затрудняет проведение специальной профилактики СПИДа. Более того, это свойство ВИЧ, по мнению ряда специалистов, ставит под сомнение саму возможность создания эффективной вакцины для защиты от СПИДа.

Одно из проявлений заражения человека вирусом СПИДа - поражение центральной нервной системы. Для СПИДа характерен очень длительный инкубационный период (исчисляется с момента заражения до появления первых признаков болезни). У взрослых он составляет в среднем 5 лет. Предполагается, что ВИЧ может сохраняться в организме пожизненно. Это значит, что до конца своей жизни инфицированные люди могут заражать других, а при соответствующих условиях могут заразиться СПИДом.

Один из главных путей передачи ВИЧ и распространения СПИДа - половые контакты, поскольку возбудитель его наиболее часто находится в крови, сперме и влагалищных выделениях инфицированных людей.

Гарантией безопасности от СПИДа являются здоровый образ жизни, крепость брачных уз и семьи, негативное отношение к половым извращениям и распущенности, случайным половым связям.

Ниже дано схематическое изображение вирусов: О - оболочка вируса оспы; Б - белковые включения. Слева - схема вириона вируса СПИДа; Р - специфические белки вируса; gP - гликопротеиды вируса; 1 - мембрана, «украденная» у клетки хозяина; 2 - молекулы РНК в белковой оболочке; 3 - молекулы белка, трансформирующегося РНК в ДНК.

Вред и польза вирусов

Многие вирусы - причина опасных болезней человека. Кроме СПИДа и онкогенных , вызывающих рак, к ним относятся вирусы оспы, кори, бешенства, полиомиелита, гриппа, острых респираторных заболеваний: ОРЗ, желтой лихорадки, герпеса (говорят: «на губах высыпала лихорадка») и даже вирусы вызывающие рост бородавок.

Однако далеко не все болезни, вызываемые вирусами, научились успешно предупреждать и лечить. Лечить и иммунодефицит мы еще не научились, и, как правило, это страшное заболевание через несколько лет приводит к смерти. И совсем нерешенная проблема - раковые заболевания. Научиться успешно, бороться с вирусами, вызывающими злокачественные опухоли, предстоит врачам будущего.

Какая польза может быть от вирусов? Ведь это враги всего живого. Польза может быть, если вирус - враг врага, а это значит, что не во всех случаях действие вируса негативно. Если он атакует одноклеточные организмы, к которым, в частности, относятся бактерии, те погибают. Поэтому с помощью таких вирусов, бактериофагов, можно уничтожать бактерии, вызывающие такие опасные заболевания, как дизентерия, холера, чума.

Способность вируса убивать клетку - хозяина можно использовать при борьбе с отдельными клетками многоклеточных организмов, и прежде всего - раковыми. При этом залог успеха является точная «наводка» вируса на клетку, которую предстоит убить, поскольку сам по себе он готов поразить все чувствительные к нему клетки организма. Для этого и вирус, и специальный белок, антитело, способный селективно связываться с участком поверхности клетки - мишени, прикрепляются к наночастице, выступающей в роли своеобразного транспортного средства. Такой «снаряд» атакует только определенные клетки, разрушая их. Разумеется, нужно позаботиться и о том, чтобы вирус мог покинуть организм, не повредив здоровые клетки. В нанотехнологиях вирусы используют также в качестве «темплата» для создания наноструктурированных систем.

Некоторые вирусы, вызывающие болезни насекомых, используют для борьбы с вредителями сельского и лесного хозяйства. Однако следует признать, что вред, приносимый этими простейшими формами жизни. Во много раз превышает их пользу.

Америка впервые одобрила вирусы в качестве пищевой добавки

Необычный метод борьбы с опасными инфекционными заболеваниями, типа листериоза, предложили американские ученые. Вирусы - бактериофаги, безопасные для человека, будут распыляться на мясных продуктах, готовых к употреблению, чтобы убивать смертельные бактерии. Метод одобрен Американским управлением по контролю нал пищевыми продуктами и медикаментами.

Листериозом, в том числе - через зараженную пищу, в США ежегодно заболевают тысячи людей, и примерно 500 из них гибнет. Выход нашла биотехнологическая компания. Она придумала «коктейль» из шести вирусов, смертельных для бактерии Listeria monocytogenes. Вирусы предложено распылять в массовом порядке на мясных продуктах, готовых к употреблению: нарезанной ветчине, хот - догах, сосисках, колбасах, а также различных продуктах из домашней птицы.

Этот специально подготовленный и очищенный коктейль прошел все необходимые испытания - никаких побочных эффектов и никакого видимого изменения в обработанной еде не происходило.

Заключение

В ходе работы над проектом я еще в большей мере убедилась, что необходима острейшая борьба с опасными для жизни человека вирусами. И это тоже весьма трудоемкая работа, так как вирусы могут мутировать, т.е. изменяться по своему составу. Вот поэтому очень трудно найти лекарство, например, против вируса иммунодефицита.

В наше время вирусы изучаются учеными всего мира. Человечество пытается извлекать из них пользу. Мы уже научились избавляться от бактерий вызывающие различные болезни с помощью бактериофагов.

Может быть, в будущем борьба с вирусами не будет такой серьезной проблемой как сейчас.

В природе нет ни одного организма, который бы приносил только вред и уничтожал другие организмы. Ведь для чего-то он был создан природой?

Считаю, что в полной мере раскрыла тему своего реферата и решила все поставленные перед собой задачи, максимально проработав всю литературу по данной теме.

Также я считаю, что эта тема очень актуальна, она действительно нужна при изучении естествознания. Ведь мы получаем новые знания о вирусах, осознаем всю опасность, которую они могут причинить каждому живому организму на нашей планете.

Список литературы

1. Богданова Т. Л. Биология: задания и упражнения. Пособие для поступающих в вузы. - М.: Высшая школа, 1991.

2. Кнорре Д. Г., Мызина С. Д. Биологическая химия: Учебник для хим., биол. и мед. спец. вузов. - М.: Высшая школа, 2000.

3. Лемеза Н. А., Камлюк Л. В. Биология в вопросах и ответах: Учебное пособие / Худ. обл. М. В. Дранко. - Мн.: ООО «Попурри», 1997.

4. Медников Б. М. Биология: формы и уровни жизни. - М.: Просвещение, 1994г.

5. Полянский Ю. И. Общая биология: Учеб. для 10-11 кл. сред. шк. - М.: Просвещение, 1993.

6. Тупикин Е. И. Общая биология с основами экологии и природоохранной деятельности: Учебное пособие для нач. проф. образования. - М.: Образовательно-издательский центр «Академия», 2002.

Поговорили на радио «Эхо Москвы» о раке в программе «Наука в фокусе». Изначально была заявлена тема «вирусная природа рака», но ведущие пытались её расширить, что простительно - тема насущная, а мифы и невежество вездесущи. Старался разъяснять предельно простым языком (профессиональных онкологов прошу простить за допущенные упрощения). Очень понравились ведущие - Егор Быковский, главный редактор журнала «Наука в фокусе» и симпатичнейшая Наргиз Асадова; с превеликим удовольствием продолжил с ними общение за чашкой чая.

Прослушать воскресный эфир можно онлайн :

Никаких купюр не делалось, всё живьем.

РЕЗЮМЕ
Рак - собирательное название для большой группы злокачественных опухолей. Злокачественность обусловлена способностью таких опухолей к метастазированию, т.е. к рассеву по организму. Опухоль образуется из клетки, в которой произошла генетическая мутация, вследствие чего она перестала «слушаться» сигналов, останавливающих клеточное деление.

1) гепатоцеллюлярный рак (печени) - гепатит В, в меньшей степени гепатит С (писал )
2) рак шейки матки - папилломавирус человека (писал )

Кроме того:
Люди со СПИДом плохо контролируют вирус герпеса 8-го типа (HHV-8), который провоцирует множественные злокачественные опухоли кожи - саркому Капоши (названа «лизиями» от англ. lesions = болячки в душевном фильме «Филадельфия» с гениальным Томом Хэнксом в главной роли). Также с ВИЧ и другими ретровирусными инфекциями ассоциируются некоторые лимфомы.

Вирус Эпштейна-Барр , вызывающий инфекционный мононуклеоз, надолго задерживается в организме и способен провоцировать рак носоглотки и лимфому Беркетта.

Из бактерий можно вспомнить желудочную Helicobacter pylori , которая провоцирует не только язвенную болезнь, но и рак желудка. H. pylori была первой бактерией, за которой ученые признали канцерогенные свойства.

ПРОФИЛАКТИКА
Отсюда и меры профилактики, среди которых самые простые, дешевые и самые же эффективные - вакцина против гепатита В и папилломовирусов.

Вообще же, во всем мире в ряду основных канцерогенных факторов стоит курение, обусловливающее около 30% суммарно всех смертей в США и немало в России (поучал ). Также важное значение в канцерогенезе играют алкоголь и ожирение. Генетическая предрасположенность безусловно важна, но здесь уж что досталось, с тем и живем (я говорю в передаче о генетических онкомаркёрах, но пока до массовых скринингов еще далеко).

Всё прочее - загрязнение окружающей среды, питание, радиация и вредные производственные факторы - играет значительно меньшую роль, если говорить о среднерусском обывателе. Такие вещи как ГМО вообще совершенно безвредны, несмотря на профузное мифотворчество в СМИ (рекомендую это). Нет никаких серьёзных оснований думать и о вреде сотовых телефонов (писал )

Считается, что вирусы (от лат. virus - яд) - нечто противное, приносящее одни неприятности. Но это грубая ошибка. Вирусы - ключевые созидатели живой природы и двигатели ее эволюции.

Один из главных доводов против гипотезы о том, что вирусы «сбежали» из клеток, - тот факт, что вирусные генетические системы существенно разнообразнее клеточных. Как известно, клеточные организмы имеют только двунитевые - линейные или кольцевые - ДНК-геномы. А геном вируса может быть представлен как одно-, так и двунитевыми молекулами РНК или ДНК, линейными или кольцевыми. Также существуют системы, использующие обратную транскрипцию. Так, у ретровирусов (например, некоторых онковирусов, ВИЧ) и параретровирусов (вирусов гепатита В, мозаики цветной капусты и др.) одна из цепей геномной ДНК синтезируется на матрице РНК. У вирусов, в отличие от клеточных организмов, реализуются все теоретически возможные способы хранения и выражения генетической информации .

Второй важный довод против того, чтобы считать вирусы произошедшими из клеток, заключается в том, что существует множество вирусных генов, которых в клеточных организмах нет. Клеточные организмы не только произошли от вирусов, но и унаследовали от них (и продолжают наследовать) значительную часть своего генетического материала. Особый интерес в этом отношении представляют эндогенные вирусы (части генома РНК- или ДНК-вирусов, встроенные в геном клетки), среди которых преобладают гены, происходящие от ретровирусов. Полагают, что млекопитающие унаследовали свыше половины генома от вирусов и их ближайших родственников - «эгоистических» генетических элементов, например, плазмид и транспозонов. Таким образом, вирусы - сородители человека. Часто последовательности генов эндогенных вирусов, которые в большом количестве имеются в человеческом геноме, изменены и уже не кодируют белки. Есть серьезные основания полагать, что такие последовательности участвуют в регуляции работы клеточных генов, хотя часто их конкретные биологические функции неизвестны. Однако кое-что важное мы знаем: например, белок синцитин, который кодируется геном оболочки одного эндогенного ретровируса, необходим для слияния клеток при образовании плаценты . Значит, ни человек, ни плацентарные животные не могли бы родиться без этого эндогенного вируса. Есть и другой важный пример. Выяснилось, что компонент генома одного из эндогенных вирусов контролирует экспрессию пролиндегидрогеназы в некоторых районах центральной нервной системы . Возможно, этот фермент принимал важное участие в эволюции мозга человека. Если в результате мутаций экспрессия этого фермента нарушена, возникают психические болезни, в том числе шизофрения. Также важную роль вирусы и их родственники играют в горизонтальном переносе клеточных генов - от одного организма другому.

Однако, несмотря на ключевую роль в эволюции, наибольшую известность вирусы получили как патогены человека, животных и растений (кстати, благодаря этому они и были впервые обнаружены). И далее речь пойдет о природе вирусной патогенности. У вирусов (особенно вирусов эукариот) нет специального «желания» навредить хозяину, а тем более его убить. И во многих случаях вирусы вполне мирно и дружелюбно уживаются с клетками. Почему же все-таки многие вирусы такие зловредные? Обычное объяснение заключается в том, что патология зараженной клетки вызывается «разграблением» ее ресурсов (материальных и структурных), которые вирус направляет на собственные нужды размножения. Однако наибольший вред может происходить от нерасчетливых защитных действий хозяев и противозащитной активности вирусов, которая прямо не связана с их размножением.

Механизмы защиты и противозащиты

Каковы главные защитные механизмы зараженной клетки? Это компоненты врожденного иммунитета: деградация РНК (вирусных, а также клеточных), угнетение синтеза белков (как вирусных, так и клеточных), самоликвидация (апоптоз и другие виды программируемой гибели) и, наконец, воспаление. Собственно, многие вирусы так и обнаружили свое существование - из-за вызываемого ими воспаления (энцефалита, воспаления легких и т. д.). Клетка борется с вирусом, нарушая собственные обмен веществ и / или структуру, и ее защитные механизмы, как правило, самоповреждающие. Можно сказать, что человек, умерший от полиомиелита (а умирает менее 1%), сам убил себя, борясь с инфекцией.

В ответ на клеточную защиту эволюция вирусов вырабатывает противозащитные средства, и между вирусом и клеткой идет гонка вооружений. Эти средства направлены прежде всего против общих метаболических процессов, лежащих в основе защитных реакций клетки. Это опять угнетение синтеза клеточных РНК и белков, нарушение внутриклеточной инфраструктуры и транспорта клетки, подавление или, наоборот, запуск апоптоза и других механизмов, вызывающих программируемую клеточную гибель. Таким образом, противозащитная стратегия вируса во многом похожа на защитное поведение клетки. Образно говоря, борцы применяют одни и те же приемы, бьют в одни и те же ворота. Например, клетка, подавляя синтез вирусных белков, использует интерферон, а, чтобы затормозить его образование, вирус, в свою очередь, угнетает белковый синтез в клетке. В зависимости от обстоятельств выгоду получает та или другая сторона. Оказывается, главный вклад в патологию вносит не размножение вируса как таковое, а противоборство клеточной защиты и вирусной противозащиты. В фитопатологии давно существует понятие «толерантность»: патогенный вирус может активно размножаться в зараженном растении, не вызывая болезненных симптомов.

Далее речь пойдет в основном о РНК-содержащих вирусах (это более простой пример). Как РНК-вирус, проникнув в клетку, выдает свое присутствие? И как клетка узнает, что в нее попал вирус? Главный признак, благодаря которому клетка это «понимает», - вирусная двуцепочечная РНК, которая в принципе может образовываться и в незараженной клетке, но не в таких количествах и местах. Клетка в некоторых случаях узнает также вирусную одноцепочечную РНК, а иногда (значительно реже) - и вирусные белки. Важно, что узнавание вирусной РНК неспецифично: «почувствовав» двуцепочечную РНК, клетка может «подумать», что в нее попал вирус, но какой - она не знает. РНК улавливаются сенсорами двух типов: толл-подобными (от англ. toll-like и от нем. toll - замечательный) рецепторами и специализированными РНК-хеликазами. Они включают ряд защитных механизмов на транскрипционном уровне, в том числе образование интерферона. Кроме того, вирусные РНК узнаются уже «исполнителями» - зависимой от двуцепочечной РНК протеинкиназой PKR, которая фосфорилирует некоторые факторы инициации трансляции, угнетая тем самым синтез белков; олигоаденилатсинтетазой (OAS), которая активирует РНКазу L, расщепляющую РНК; системой РНК-интерференции, приводящей к деградации РНК и нарушению ее трансляции.

Поскольку вирус узнается как нечто неспецифическое, клетка не может знать его «намерений». И вообще на любой возможный вирус индивидуальную врожденную систему защиты было бы невозможно придумать. Значит, клетка может бороться с вирусом только стандартными приемами. И поэтому ее оборонительные действия часто несоразмерны имеющейся угрозе. Однако, если защитные реакции клетки столь неспецифичны, почему разные вирусы вызывают все-таки различные болезни? Во-первых, каждый вирус может заражать только определенный вид клеток конкретных организмов. Это связано с тем, что для проникновения в клетку он должен провзаимодействовать с клеточными рецепторами, которые ему «подходят». Кроме того, для размножения вирусов требуется определенная внутриклеточная среда (нередко нужны специфические клеточные белки). Во-вторых, в то время как защитные реакции клетки стандартны, противозащитные средства вируса в большой степени индивидуальны, хотя и направлены против стандартных клеточных механизмов.

У растений в качестве противовирусного механизма очень важную роль играет РНК-интерференция. Из вирусной РНК образуется двуцепочечная (важный фактор, по которому клетка узнает о наличии вируса). При участии компонентов системы РНК-интерференции - фермента Dicer, который разрезает эту двуцепочечную РНК на фрагменты длиной 21–25 пар нуклеотидов, а затем РНК-белкового комплекса RISC - в конце концов образуются одноцепочечные короткие фрагменты РНК. Гибридизуясь с вирусной РНК, они вызывают либо ее деградацию, либо угнетение ее трансляции. Такой защитный механизм эффективен, но может повреждать саму клетку, что хорошо видно на примере вироидов. Это патогены растений, короткие (несколько сотен нуклеотидов) молекулы кольцевой одноцепочечной РНК, не покрытые белковой оболочкой. Вироиды не кодируют белки, но могут вызывать тяжелые симптомы в зараженном растении. Это происходит потому, что клетка защищается. Образующаяся вироидная двуцепочечная РНК подвергается действию всех компонентов системы РНК-интерференции, в результате образуются фрагменты одноцепочечной РНК, которые гибридизуются уже не с вирусной РНК, а с клеточной. Это приводит к ее деградации и развитию симптомов заболевания. Однако многие вирусы растений кодируют разнообразные белки, препятствующие РНК-интерференции (viral suppressors of RNA silencing - VSR ). Они либо угнетают распознавание и расщепление вирусных РНК, либо подавляют формирование и функционирование комплекса RISC. Поэтому эти VSR-белки могут нарушать механизмы физиологически важной (не связанной с вирусами) РНК-интерференции, вызывая патологические симптомы.

«Секьюрити»-белки

От работы таких белков в значительной степени зависит противозащита вирусов, в частности пикорнавирусов - мелких РНК-содержащих патогенов. В эту большую группу входят, в частности, возбудители полиомиелита, гепатита А, ящура и др. Особенность этих вирусов в том, что за редким исключением их белки синтезируются в виде единого полипротеина, из которого затем образуются отдельные зрелые белки. Среди них можно выделить три группы. Первая состоит из ключевых белков - жизненно важных, с фиксированными функциями, непосредственно обеспечивающих размножение вируса: РНК-зависимые РНК-полимеразы, необходимые для репликации вирусного генома; капсидные белки, образующие белковую оболочку вируса; протеазы, принимающие участие в процессе превращения полипротеина в зрелые белки; белок VPg (viral protein genome linked - вирусный белок, соединенный с геномом), служащий затравкой для синтеза молекул РНК; хеликаза - очень ценный фермент, который есть у всех пикорнавирусов, но играет не очень понятную роль. Вторая группа включает также жизненно необходимые белки, но выполняющие «подсобные» работы - гидрофобные белки-«гиды» 2В и 3А. Они направляют ключевые белки в места назначения и способствуют созданию оптимальной внутриклеточной среды для репродукции вируса. В третью группу включаются лидерный белок L, открытый в нашей лаборатории 30 лет назад , и белок 2А; мы назвали их «секьюрити»-белками (security - охрана) . Это специализированное противозащитное «вооружение» пикорнавирусов. Вообще, все эти три класса белков могут бороться с защитными механизмами клетки. Но ключевые белки и белки-«гиды» занимаются этой работой «по совместительству», так как у них есть другие важные обязанности, которым должны соответствовать их структура и функции. Следовательно, их оборонительные возможности ограничены необходимостью выполнять основную работу. А вот «секьюрити»-белки трудятся по специальности «на полную ставку» - эволюция «наняла» их именно для «охраны» (потом некоторые из них «научились» делать и что-то еще). Для исполнения своих обязанностей они могут иметь любую необходимую структуру .

Одна из важнейших функций «секьюрити»-белков состоит в том, что они принимают участие в определении судьбы зараженной клетки. Существует много разных вариантов ее гибели, но два главных, наиболее известных механизма - некроз и апоптоз, которые различаются по морфологическим и биохимическим признакам. При некрозе клетка лизируется, а ее содержимое изливается наружу, в межклеточное пространство. При апоптозе на ее поверхности образуются хорошо различимые выпячивания, ее ДНК деградирует до нуклеосомных фрагментов, и в конечном счете клетка фрагментируется на отдельные апоптотические тельца, ограниченные плазматической мембраной. Очень важно, как именно клетка умрет. При некрозе развивается защитное воспаление, но при этом вирус выходит из клетки и распространяется. При апоптозе же распространение вируса ограничено и обычно нет воспалительной реакции. Гибель зараженной клетки, как правило, - это акт самопожертвования, ограничивающий репродукцию вируса.

Мы обнаружили, что заражение пикорнавирусами, в частности вирусом полиомиелита (полиовирусом), включает апоптозную программу клетки . Это происходит по одному из классических путей, когда из митохондрий выходит цитохром c и активируется каскад протеолитических ферментов каспаз . Но, с другой стороны, выяснилось, что у вирусов есть антиапоптозный механизм - способность подавлять апоптозную реакцию клетки . Так, клетки HeLa, зараженные полиовирусом или вирусом энцефаломиокардита (тоже пикорнавирусом), погибают с признаками некроза. А вот если выключить антиапоптозное «оружие» (подавить синтез вирусных белков), клетка гибнет от апоптоза (самопожертвования). У обоих вирусов таким оружием служат «секьюрити»-белки. Однако у вируса энцефаломиокардита в этой роли выступает L-белок , а у полиовируса - 2A-белок . Лидерный белок не имеет ферментативной активности, тогда как 2А-белок - протеаза. У них нет ничего общего ни в структурном, ни в биохимическом отношении, но они оба обладают антиапоптозным действием, основанным на разных молекулярных механизмах.

Другой противозащитный механизм «секьюрити»-белков пикорнавирусов - нарушение ядерно-цитоплазматического транспорта [10–12 ]. Мы показали, что при заражении этими вирусами повышается проницаемость ядерной оболочки и нарушается активный обмен макромолекулами между цитоплазмой и ядром. А если структура клетки повреждена, то она не может включать свои регуляторные механизмы для борьбы с вирусом. У полиовируса «секьюрити»-белок 2А нарушает ядерно-цитоплазматический транспорт, гидролизуя нуклеопорины - компоненты ядерных пор . А у вируса энцефаломиокардита работает лидерный белок - он влияет на клеточный каскад фосфорилирования нуклеопоринов [ , ].

Противозащитная функция «секьюрити»-белков может проявляться и по-другому. Так, L-белки кардиовирусов (в том числе вируса энцефаломиокардита) и 2А-белки энтеровирусов (включая полиовирус) угнетают образование интерферона. А его действие тормозят L-белок вируса ящура и 2А-белок полиовируса. Тем не менее «секьюрити»-белки пикорнавирусов - не жизненно важные. Обоих стражей можно удалить либо вызвать в них значительные делеции (как в случае L-белка кардиовирусов, 2A-белков вируса гепатита А и кардиовирусов) - и при этом вирус не лишается жизнеспособности.

Обоюдное разоружение

Каковы будут последствия инактивации вирусных «секьюрити»-белков для клетки? С одной стороны, повысится чувствительность вирусов к защитным механизмам врожденного клеточного иммунитета. Но, с другой стороны, возрастет и его самоповреждающая, самоубийственная активность. А что произойдет, если одновременно выключить оборонительные механизмы клетки и вируса? Мы изучали такую ситуацию на примере взаимодействия менговируса (штамма вируса энцефаломиокардита) и клеток HeLa . Зараженные вирусом дикого типа, они достаточно быстро гибнут от некроза. А если вирус частично разоружен (инактивирован лидерный белок), клетки HeLa живут чуть дольше и гибнут не от некроза, а от апоптоза. Когда же снижена обоюдная оборона (в клетке выключен апоптоз химическим соединением, которое угнетает каспазы, а у вируса инактивирован его лидерный белок), даже через вдвое больший промежуток времени клетки чувствуют себя значительно лучше, чем те, которые не были разоружены. А размножение вируса (и динамика, и урожай) шло совершенно одинаково, независимо от того, была ли выключена только его противозащита или одновременно снята и клеточная оборона. Получается, что в клетках, в которых еще нет серьезных патологических повреждений (так называемого цитопатического эффекта), может образоваться уже очень много вирусных частиц. Таким образом, для размножения вируса повреждение клетки необязательно. Следовательно, эффективной стратегией антивирусной терапии, направленной на облегчение симптомов заболевания, может служить одновременное подавление как вирусной противозащиты, так и клеточной защиты.

Программируемая гибель

Эта серия наших опытов дала также возможность проникнуть глубже в природу вызываемой вирусом некротической смерти. Что это - убийство клетки вирусом или ее самоубийство (самопожертвование), когда она решает, что ради общего блага целесообразнее погибнуть? Некротическим поражениям подвергаются:

  • плазматическая мембрана (повышается ее проницаемость, образуются «волдыри»),
  • цитоплазма (изменяются микротрубочки и микрофиламенты),
  • ядро (сжимается, деформируется, конденсируется хроматин),
  • метаболическая активность (изменяются NADH-зависимые восстановительные реакции, жизнеспособность).

При выключенном апоптозе (добавлении химического ингибитора каспаз) разнообразные некротические изменения зависят от того, функционирует вирусный лидерный белок или нет. Например, если он инактивирован, у клетки не меняется мембранная проницаемость, не появляются «волдыри», связанные с нарушением осмотического равновесия, не происходит и ряд других некротических поражений. Одно из возможных объяснений этого эффекта таково: L-белок воздействует на множество мишеней в разных клеточных компартментах. Но поскольку этот белок небольшой и не имеет ферментативной активности, более вероятно, что число его непосредственных мишеней гораздо меньше. Мы предполагаем, что лидерный белок воздействует на один или несколько ключевых клеточных элементов, контролирующих судьбу клетки, и в результате запускается ее некротическая программа, которая ответственна за большинство перечисленных патологических изменений. Следовательно, не вирус убивает клетку некротическим путем, а она сама кончает жизнь самоубийством (осуществляет акт самопожертвования). Эта точка зрения согласуется с новыми представлениями, в соответствии с которыми помимо апоптоза существует ряд других физиологически важных видов программируемой (закодированной в клеточном геноме) гибели клеток, в том числе сходный с некрозом - некроптоз.

Таким образом, самопожертвование клетки при вирусной инфекции может проявляться в виде некроптоза или апоптоза. Некроптоз может быть защитной реакцией клетки на вирусную инфекцию, и не только в случае пикорнавирусов. Какой механизм выгоднее для вируса - зависит от условий. Мы видим, что его противозащитное действие может проявляться в виде «перемаршрутирования» механизмов, закодированных в геноме клетки. Это важный (хотя и не единственный) способ противозащиты и один из основных механизмов патогенности вирусов. Индуцированные вирусом программы апоптоза и некроза конкурируют друг с другом . Мы показали, что при заражении клеток HeLa полиовирусом сначала включается апоптоз, а затем происходит его подавление и запускается некротический путь. Таким образом, заражение клетки вирусом активирует в ней ряд защитных действий, среди которых есть два самоубийственных механизма программируемой гибели - апоптозный и некротический. А дальше происходит конкуренция между этими путями: угнетение одного из них активирует другой, и наоборот . И все это регулируется клеточными белками, вирусными (в первую очередь «секьюрити»-белками), а также внешними факторами.

Гонка вооружений

Так как у клеток существуют защитные механизмы, а у вирусов - противозащитные, естественно, между ними происходит гонка вооружений. Неконсервативность «секьюрити»-белков позволяет предположить, что они адаптированы для противодействия оборонным механизмам определенного хозяина . И поэтому его смена может сопровождаться утерей функции «секьюрити»-белка и, как следствие, усилением защитных реакций хозяина. Этим можно объяснить особую патогенность «новых» (newly emerging - нарождающихся) вирусов. Так, вирус гриппа - малопатогенный, почти безобидный кишечный вирус диких птиц. Когда он заражает человека, может возникать испанка, птичий или свиной грипп. Вирус атипичной пневмонии - относительно безопасен для летучих мышей, а у человека от него возникает тяжелый острый респираторный синдром, сопровождающийся высокой летальностью. Наконец, ВИЧ (точнее - его предок) практически безвреден для обезьян, а у человека он вызывает СПИД. Очень важно, что новых факторов патогенности при переходе к новому хозяину у этих вирусов не возникает (просто в результате нескольких мутаций, обеспечивающих проникновение в клетку, они приобретают способность заражать человека). Другим возможным механизмом нарушения равновесия между вирусом и хозяином и появления новых патогенов может быть смена вирусного противозащитного оружия, например, утеря старого или приобретение нового «секьюрити»-белка.

Однако длительная коэволюция хозяина и вируса должна приводить к снижению патогенности последнего (взаимовыгодному обоюдному разоружению). Классический пример - вирус миксомы / фибромы. В середине XIX в. в Австралию завезли европейских кроликов, которые быстро размножились и стали серьезной угрозой для сельского хозяйства. Через 100 лет для контроля их популяции стали использовать патогенный вирус фибромы / миксомы (из семейства поксвирусов, к которому относится и вирус оспы). Разные кролики по-разному реагируют на этот вирус. У бразильских кроликов через три недели после заражения он вызывает доброкачественную опухоль - фиброму (локализованный узелок на коже). Но у европейских кроликов, чувствительных к этому вирусу, уже через 10 дней после заражения развивается генерализованное смертельное заболевание.

Завезенный в Австралию, этот вирус вызывал переносимые комарами летние эпизоотии, когда более 99% инфицированных кроликов гибли меньше чем за две недели. Перезимовать больше шансов имели менее вирулентные варианты вируса, и это приводило к отбору ослабленных (аттенуированных) штаммов. И примерно через 10 лет смертность европейских кроликов от эволюционировавшего вируса снизилась вдвое. Одновременно шел отбор резистентных кроликов: их смертность от исходного вируса снизилась примерно в четыре раза. Всего за десятилетие (ничтожно малый срок в рамках эволюции) примерно в 10 раз улучшились взаимоотношения между патогеном и хозяином. Это, безусловно, несколько упрощенная схема, поскольку гонка вооружений не прекращается: в ответ на повышение резистентности кроликов может возрастать и вирулентность вируса. Однако это яркий пример роли взаимодействия вирусов и клеточных организмов в эволюции и тех и других. Вирусы и клетки «учат» друг друга, и полученные «знания» наследуются. В 2013 г. году два выпускника кафедры вирусологии МГУ Евгений Кунин и Валерьян Доля опубликовали статью о «вироцентрическом» взгляде на эволюцию, согласно которому противодействие и кооперация вирусов и клеточных организмов - главный фактор их эволюции .

Мой рассказ далеко не исчерпывает тему: о природе патогенности вирусов известно значительно больше. Многое из того, что мы сейчас знаем, удалось изучить в самые последние годы, и есть все основания ожидать новых сюрпризов. Можно и нужно винить вирусы за тяжелые болезни и необходимо бороться с ними, но мы должны быть благодарны вирусам за существование и разнообразие живой природы, и в том числе - за существование человека.

Автор благодарен коллегам по научной кооперации - сотрудникам Института полиомиелита и вирусных энцефалитов им. М. П. Чумакова РАМН, Московского государственного университета им. М. В. Ломоносова, Института белка РАН (Пущино Московской области), Университета Базеля (Швейцария), Университета штата Висконсин (США), Университета Неймегена им. Радбода (Нидерланды).

Статья основана на лекции, прочитанной на школе «Современная биология и биотехнологии будущего» (Звенигород, 26 января - 1 февраля 2014 г.).

. Belov G. A., Lidsky P. V., Mikitas O. V. et al. Bidirectional increase in permeability of nuclear envelope upon poliovirus infection and accompanying alterations of nuclear pores // J. Virol. 2004. V. 78. P. 10166–10177. doi:10.1128/JVI.78.18.10166-10177.2004
. Lidsky P. V., Hato S., Bardina M. V. et al. Nucleocytoplasmic traffic disorder induced by cardioviruses // J. Virol. 2006. V. 80. P. 2705–2717. doi:10.1128/JVI.80.6.2705-2717.2006
. Bardina M. V., Lidsky P. V., Sheval E. V. et al. Mengovirus-induced rearrangement of the nuclear pore complex: hijacking cellular phosphorylation machinery // J. Virol. 2009. V. 83. P. 3150–3161. doi:10.1128/JVI.01456-08
. Mikitas O. V., Ivin Y. Y., Golyshev S. A. et al. Suppression of injuries caused by a lytic RNA virus (mengovirus) and their uncoupling from viral reproduction by mutual cell/virus disarmament // J. Virol. 2012. V. 86. P. 5574–5583. doi:10.1128/JVI.07214-11
. Agol V. I., Belov G. A., Bienz K. et al. Competing death programs in poliovirus-infected cells: commitment switch in the middle of the infectious cycle // J. Virol. 2000. V. 74. P. 5534–5541. doi:10.1128/JVI.74.12.5534-5541.2000
. Agol V. I. Cytopathic effects: virus-modulated manifestations of innate immunity? // Trends Microbiol. 2012. V. 20. P. 570–576. doi:10.1016/j.tim.2012.09.003
. Koonin E. V., Dolja V. V. A virocentric perspective on the evolution of life // Curr. Opin. Virol. 2013. V. 3. P. 546–557. doi:10.1016/j.coviro.2013.06.008
Загрузка...